đường thẳng đi qua gốc tọa độ
Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng d? Trong không gian với hệ tọa độ Oxyz, cho hai điểm \(S\left( {0;0;1} \right),A\left( {1;1;0} \right)\). Hai điểm \(M\left( {m;0;0} \right),N\left( {0;n;0} \right)\) thay đổi sao cho m + n = 1 và m > 0, n > 0.
Khi được đón về đến cầu Bảo, ngã ba đường đi Đà Lạt và đường rẽ vào chợ Tháp Chàm, Nguyễn Văn Hoàng đã đứng ra diễn thuyết. Cụ Nguyễn Văn Chung đã cõng ông con trai Nguyễn Văn Thiệu, khi đó mới 7-8 tuổi từ Tri Thủy lên Tháp Chàm, cách 8km để tham dự.
Bước 1: tìm phương trình đường thẳng XY, giả sử có dạng Ax + By = C. Bước 2: tìm trung điểm M của đoạn XY bằng cách lấy trung bình cộng của 2 hoành độ và trung bình cộng của 2 tung độ. Bước 3: viết phương trình đường thẳng của đường thẳng vuông góc với đường
đường thẳng đi qua gốc tọa độ O(0;0) luôn luôn có dạng \(y=ax(ae0)\) a) đường thẳng đi qua A(-1;1), B(-1;3) có cùng hoành độ nên đường thẳng AB là \(x=-1\) song song với trục hoành. Vậy đường thẳng cần tìm chính là trục tung Oy hay \(x=0\)
01/05/2020 9,459. Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x - y - 9 = 0. Tìm phép tịnh tiến theo vectơ có phương song song với trục Ox biến d thành đường thẳng d' đi qua gốc tọa độ và viết phương trình đường thẳng d'. Xem lời giải.
Phương pháp tọa độ trong không gian. Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (606.77 KB, 60 trang ) Thầy Khương- Dạy học bằng Tâm- Nâng Tầm Học Sinh 7
Hủy Hợp Đồng Vay Tiền Online.
giới thiệu đến các em học sinh lớp 10 bài viết Xác định tọa độ điểm thuộc đường thẳng, nhằm giúp các em học tốt chương trình Toán 10. Nội dung bài viết Xác định tọa độ điểm thuộc đường thẳng Xác định tọa độ điểm thuộc đường thẳng. Phương pháp giải. Để xác định tọa độ điểm thuộc đường thẳng ta dựa vào nhận xét sau Điểm A thuộc đường thẳng A x = xy + at. Điểm A thuộc đường thẳng A a + bx + c = 0 ĐK a + b = 0 có dạng với b = 0 hoặc A. Các ví dụ. Ví dụ 1 Cho đường thẳng A 32 – 4g – 12 = 0. a Tìm tọa độ điểm A thuộc A và cách gốc tọa độ một khoảng bằng bốn. b Tìm điểm B thuộc A và cách đều hai điểm E5; 0, F3; -2. c Tìm tọa độ hình chiếu của điểm M1; 2 lên đường thẳng A Dễ thấy M 0; -3 thuộc đường thẳng A và u4; 3 là một vectơ chỉ phương của A nên có X = 4t phương trình tham số là y = -3 + 3t. Điểm A thuộc A nên tọa độ của điểm A có dạng A 4t; -3 + 34. Vậy ta tìm được hai điểm. b Vì B < A nên B4t; -3 + 3t. Điểm B cách đều hai điểm E5; 0, F3; -2 Suy ra B. c Gọi H là hình chiếu của M lên A khi đó nên H 4t; −3 + 3 . Ta có a4; 3 là vectơ chỉ phương của A và vuông góc với HM. Ví dụ 2 Cho hai đường thẳng A và A' a Xác định tọa độ điểm đối xứng với điểm A-1; 0 qua đường thẳng A. b Viết phương trình đường thẳng đối xứng với A' qua A. Lời giải a Gọi H là hình chiếu của A lên A khi đó H 20 – 6; t Ta có u2; 1 là vectơ chỉ phương của A và vuông góc với AH 2 – 5; t nên AH = 0 + 22 – 5 + t = 0 t = 2, H-2; 2 A' là điểm đối xứng với A qua A suy ra H là trung điểm của AA' do đó. Vậy điểm cần tìm là A'-3; 4 b Thay vào phương trình A ta được -1 – t – 2t + 6 = 0 + t của A và A' là K, Dễ thấy điểm A thuộc đường thẳng A' do đó đường thẳng đối xứng với A'qua A đi qua điểm A' và x điểm K do đó nhận A'K có phương trình. Nhận xét Để tìm tọa độ hình chiếu H của A lên A ta có thể làm cách khác như sau ta có đường thẳng AH nhận u2; 1 làm VTPT nên có phương trình là 2 + y + 2 = 0 do đó tọa độ H là nghiệm của hệ x – 2y + 6 = 0 . Ví dụ 3 Cho tam giác ABC vuông ở A. Biết A-1; 4, B1; -4, đường thẳng BC đi qua điểm. Tìm toạ độ dinh C. Suy ra đường thẳng BC nhận VTCP nên có phương trình là tam giác ABC vuông tại A nên = 0, AB2; -8, AC2 + 2t; -8 + 9t suy ra 22 + 2t – 89t – 8 = 0. Ví dụ 4 Cho hình bình hành ABCD. Biết I là trung điểm của cạnh CD, D3 và đường phân giác góc BAC có phương trình là A. Xác định tọa độ đỉnh B. Cách 1 Điểm I là trung điểm của CD nên Vì A nên tọa độ điểm A. Mặt khác ABCD là hình bình hành tương đương với DA, DC không cùng phương và AB = DC. Đường thẳng A là phân giác góc BAC nhận vectơ chỉ phương. Vậy tọa độ điểm B2; 4. Cách 2 Ta có đường thẳng d đi qua C vuông góc với A nhận u11 làm vectơ pháp tuyến nên có phương trình là 1.x2 – 4 + = 0 hay 2x + 2y – 15 = 0. Tọa độ giao điểm H của A và d là nghiệm của hệ Gọi C là điểm đối xứng với C qua A thì khi đó C' thuộc đường thẳng chứa cạnh AB và H là trung điểm Suy ra đường thẳng chứa cạnh AB đi qua C và nhận DC1; 2 làm vectơ chỉ phương nên có phương trình y = 5 + 2t. Thay x, y từ phương trình đường thẳng chứa cạnh AB vào phương trình đường thẳng A ta được ABCD là hình bình hành nên AB. Chú ý Bài toán có liên quan đến đường phân giác thì ta thường sử dụng nhận xét A là đường phân giác của góc tạo bởi hai đường thẳng cắt nhau A và A, khi đó điểm đối xứng với điểm M & A qua A thuộc A. Ví dụ 5 Cho đường thẳng d 1 – 2 – 2 = 0 và 2 điểm A0; 1 và B3; 4. Tìm tọa độ điểm M trên d sao cho MA + 2MB là nhỏ nhất.
Đáp án Giải thích các bước giải a Gọi pt đường thẳng cần tìm là $dy=ax+b$ Do đường thẳng $d$ đi qua $O0;0$ nên ta có $b=0$ Do đường thẳng $d$ đi qua điểm $M2;4$ ,nên $2a+b=4$ Thay $b=0$ ta có $a=2$ Vậy PTĐT cần tìm là $y=2x+0$ bĐể parabol $y=ax^2$ đi qua điểm $M2;4$ thì $4=2x^2$ $x=\pm 2$
đường thẳng đi qua gốc tọa độ